Subscribe:

Senin, 25 Maret 2013

Metode Cramer

jika Ax = b adalah sebuah sistem linear n yang tidak di ketahui dan det(A)≠ 0 maka persamaan tersebut mempunyai penyelesaian yang unik
X_{1} =  \frac{det(A_{1})} {det(A)},  X_{2} = \frac{det(A_{2})} {det(A)}, ... ,  X_{n} = \frac{det(A_{n})} {det(A)}
dimana A j adalah matrik yang didapat dengan mengganti kolom j dengan matrik b
Contoh soal: Gunakan metode cramer untuk menyelesaikan persoalan di bawah ini
x1 + 2x3 = 6
-3x1 + 4x2 + 6x3 = 30
-x1 - 2x2 + 3x3 = 8
Jawab: bentuk matrik A dan b
A = \begin{bmatrix}
1 & 0 & 2\\
-3 & 4 & 6\\
-1 & -2 & 3\\
\end{bmatrix} b = \begin{bmatrix} 6\\ 30\\ 8\\ \end{bmatrix}
kemudian ganti kolom j dengan matrik b
A1 = \begin{bmatrix} 6 & 0 & 2\\ 30 & 4 & 6\\ 8 & -2 & 3\\ \end{bmatrix} A2 = \begin{bmatrix} 1 & 6 & 2\\ -3 & 30 & 6\\ -1 & 8 & 3\\ \end{bmatrix} A3 = \begin{bmatrix} 1 & 0 & 6\\ -3 & 4 & 30\\ -1 & -2 & 8\\ \end{bmatrix}
dengan metode sarrus kita dapat dengan mudah mencari determinan dari matrik-matrik di atas
maka,
 x_{1} = \frac{det(A_{1})} {det(A)} = \frac{-40} {44} = \frac{-10} {11}
 x_{2} = \frac{det(A_{2})} {det(A)} = \frac{72} {44} = \frac{18} {11}
 x_{3} = \frac{det(A_{3})} {det(A)} = \frac{152} {44} = \frac{38} {11}

R=Er...E2 E1 A
dan,
det(R)=det(Er)...det(E2)det(E1)det(EA)
Jika A dapat di-invers, maka sesuai dengan teorema equivalent statements , maka R = I, jadi det(R) = 1 ≠ 0 dan det(A) ≠ 0. Sebaliknya, jika det(A) ≠ 0, maka det(R) ≠ 0, jadi R tidak memiliki baris yang nol. Sesuai dengan teorema R = I, maka A adalah dapat di-invers. Tapi jika matrix bujur sangkar dengan 2 baris/kolom yang proposional adalah tidak dapat diinvers.
Contoh Soal :



 
A=\begin{bmatrix}
 1 &  2 &  3\\
 1 &  0 &  1\\
 2 &  4 &  6\\
\end{bmatrix}
karena det(A) = 0. Maka A adalah dapat diinvers.



Blog Kawan




3 komentar: