Subscribe:

Senin, 25 Maret 2013

Matriks Balikan (Invers)

Orde 2x2
JIka A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , maka B disebut balikan atau invers dari A dan dapat dituliskan B = A^{-1} ( B sama dengan invers A ). Matriks B juga mempunyai invers yaitu A maka dapat dituliskan A = B^{-1}. Jika tidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah invers dari A maka B = C.

Matriks A = \begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix} dapat di-invers apabila ad - bc ≠ 0

Dengan Rumus =
A^{-1} = \frac{1} {det (A)}\begin{bmatrix}
d & -b \\
-c & a \\
\end{bmatrix} = \frac{1} {ad-bc}\begin{bmatrix}
d & -b \\
-c & a \\
\end{bmatrix} = \begin{bmatrix}
\frac{d} {ad-bc} & -\frac{b} {ad-bc} \\
-\frac{c} {ad-bc} & \frac{a} {ad-bc} \\
\end{bmatrix}
Apabila A dan B adalah matriks seordo dan memiliki balikan maka AB dapat di-invers dan (AB)^{-1} = B^{-1} A^{-1}
Contoh 1: Matriks
A = \begin{bmatrix}
2 & -5 \\
-1 & 3 \\
\end{bmatrix} dan B = \begin{bmatrix}
3 & 5 \\
1 & 2 \\
\end{bmatrix}
AB = \begin{bmatrix}
2 & -5 \\
-1 & 3 \\
\end{bmatrix}\begin{bmatrix}
3 & 5 \\
1 & 2 \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix} = I (matriks identitas)
BA = \begin{bmatrix}
3 & 5 \\
1 & 2 \\
\end{bmatrix}\begin{bmatrix}
2 & -5 \\
-1 & 3 \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix} = I (matriks identitas)
Maka dapat dituliskan bahwa B = A^{-1} (B Merupakan invers dari A)
Contoh 2: Matriks
A = \begin{bmatrix}
1 & 1 \\
3 & 4 \\
\end{bmatrix} dan B = \begin{bmatrix}
2 & 5 \\
3 & 4 \\
\end{bmatrix}
AB = \begin{bmatrix}
1 & 1 \\
3 & 4 \\
\end{bmatrix}\begin{bmatrix}
2 & 5 \\
3 & 4 \\
\end{bmatrix} = \begin{bmatrix}
3 & 4 \\
6 & 8 \\
\end{bmatrix}
BA = \begin{bmatrix}
2 & 5 \\
3 & 4 \\
\end{bmatrix}\begin{bmatrix}
1 & 1 \\
3 & 4 \\
\end{bmatrix} = \begin{bmatrix}
17 & 21 \\
15 & 19 \\
\end{bmatrix}
Karena AB ≠ BA ≠ I maka matriks A dan matriks B disebut matriks tunggal.
Contoh 3: Matriks
A = \begin{bmatrix}
3 & 1 \\
5 & 2 \\
\end{bmatrix}
Tentukan Nilai dari A-1
Jawab: A^{-1} =\frac{1} {(3)(2)-(5)(1)}\begin{bmatrix}
2 & -1 \\
-5 & 3 \\
\end{bmatrix} = \frac{1} {6-5}\begin{bmatrix}
2 & -1 \\
-5 & 3 \\
\end{bmatrix} = \frac{1} {1}\begin{bmatrix}
2 & -1 \\
-5 & 3 \\
\end{bmatrix} = \begin{bmatrix}
2 & -1 \\
-5 & 3 \\
\end{bmatrix}
Contoh 4: Matriks
A = \begin{bmatrix}
1 & 2 \\
1 & 3 \\
\end{bmatrix}, B = \begin{bmatrix}
3 & 2 \\
2 & 2 \\
\end{bmatrix}, AB = \begin{bmatrix}
7 & 6 \\
9 & 8 \\
\end{bmatrix}
Dengan menggunakan rumus, maka didapatkan
A^{-1} = \begin{bmatrix}
3 & -2 \\
-1 & 1 \\
\end{bmatrix}B^{-1} = \begin{bmatrix}
1 & -1 \\
-1 & \frac{3} {2} \\
\end{bmatrix}(AB)^{-1} = \begin{bmatrix}
4 & -3 \\
-\frac{9} {2} & 7 \\
\end{bmatrix}
Maka
B^{-1} A^{-1}= \begin{bmatrix}
1 & -1 \\
-1 & \frac{3} {2} \\
\end{bmatrix}\begin{bmatrix}
3 & -2 \\
-1 & 1 \\
\end{bmatrix} = \begin{bmatrix}
4 & -3 \\
-\frac{9} {2} & 7 \\
\end{bmatrix}
Ini membuktikan bahwa (AB)^{-1} = B^{-1} A^{-1}

Orde 3x3


A = \begin{bmatrix}
 3 &  2 & -1\\
 1 &  6 &  3\\
 2 & -4 &  0\\
\end{bmatrix}

kemudian hitung kofaktor dari matrix A
C11 = 12 C12 = 6 C13 = -16

C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = -10 C33 = 16
menjadi matrix kofaktor
\begin{bmatrix}
 12 &  6  & -16\\
 4  &  2  &  16\\
 12 & -10 &  16\\
\end{bmatrix}
cari adjoint dari matrix kofaktor tadi dengan mentranspose matrix kofaktor di atas, sehingga menjadi
adj(A) = \begin{bmatrix}
 12 &  4 &  12\\
  6 &  2 & -10\\
-16 & 16 &  16\\
\end{bmatrix}
A^{-1} = \frac{1}{det(A)}adj(A)
dengan metode Sarrus, kita dapat menghitung determinan dari matrix A
\mathit{det(A) = 64}
A^{-1} = \frac{1}{det(A)}adj(A) = \frac{1}{64} \begin{bmatrix}
 12 &  4 &  12\\
  6 &  2 & -10\\
-16 & 16 &  16\\
\end{bmatrix} = \begin{bmatrix}
 \frac{12}{64} & \frac{4}{64}  &  \frac{12}{64}\\
 \frac{6}{64}  & \frac{2}{64}  & -\frac{10}{64}\\
-\frac{16}{64} & \frac{16}{64} &  \frac{16}{64}\\
\end{bmatrix}


0 komentar:

Posting Komentar